半有源RFID。
无源RFID自身不供电,但有效识别距离太短。有源RFID识别距离足够长,但需外接电源,体积较大。而半有源RFID就是为这一矛盾而妥协的产物。半有源RFID又叫做低频激活触发技术。在通常情况下,半有源RFID产品处于休眠状态,仅对标签中保持数据的部分进行供电,因此耗电量较小,可维持较长时间。当标签进入射频识别阅读器识别范围后,阅读器先现以125KHz低频信号在小范围内精确激活标签使之进入工作状态,再通过2.4GHz微波与其进行信息传递。也即是说,先利用低频信号精确定位,再利用高频信号快速传输数据。其通常应用场景为:在一个高频信号所能所覆盖的大范围中,在不同位置安置多个低频阅读器用于激活半有源RFID产品。这样既完成了定位,又实现了信息的采集与传递。
rfid卡发展进程
1940-1950年:由于雷达技术的发展和进步从而出了RFID技术,1948年RFID的理论基础诞生。
1950-1960年:人们开始对RFID技术进行探索,但是并没有脱离实验室研究。
1960-1970年:相关理论不断发展,并且将这一系统在实际中开始运用。
1970-1980年:RFID技术不断更新,产品研究逐步深入,对于RFID的测试开始进一步加速。并且实现了对相关系统得应用。
1980-1990年:RFID技术和相关产品被开发并且应用在市场中,并且出现了多种领域的运用。
1990-2000年:人们开始对RFID的标准化问题给予重视,并且在生活的多个领域可以见到RFID系统的身影。
2000年后:人们普遍认识到标准化问题的重要意义,RFID产品的种类进一步丰富发展,无论是有源、无源还是半有源电子标签都开始发展起来,相关生产成本进一步下降,应用领域逐渐增加。
时至今日,RFID的技术理论得到了进一步的丰富和发展,人们研发单芯片电子标签、多电子标签识读、无线可读可写、适应高速移动物体的RFID技术不断发展,并且相关产品也走入我们的生活,并开始广泛应用。
关于电子标签
电子标签由收发天线、AC/DC电路、解调电路、逻辑控制电路、存储器和调制电路组成。
(1)收发天线:接收来自阅读器的信号,并把所要求的数据送回给阅读器。
(2)AC/DC电路:利用阅读器发射的电磁场能量,经稳压电路输出为其它电路提供稳定的电源。
(3)解调电路:从接收的信号中去除载波,解调出原信号。
(4)逻辑控制电路:对来自阅读器的信号进行译码,并依阅读器的要求回发信号。
(5)存储器:作为系统运作及存放识别数据的位置。
(6)调制电路:逻辑控制电路所送出的数据经调制电路后加载到天线送给阅读器。
无线射频识别技术通过无线电波不接触快速信息交换和存储技术,通过无线通信结合数据访问技术,然后连接数据库系统,加以实现非接触式的双向通信,从而达到了识别的目的,用于数据交换,串联起一个极其复杂的系统。在识别系统中,通过电磁波实现电子标签的读写与通信。根据通信距离,可分为近场和远场,为此读/写设备和电子标签之间的数据交换方式也对应地被分为负载调制和反向散射调制。